When to Worry About Sensitivity Bias:
A Social Reference Theory and
Evidence from 30 Years of List Experiments†

Graeme Blair‡ Alexander Coppock§ Margaret Moor¶

Forthcoming, American Political Science Review

Abstract

Eliciting honest answers to sensitive questions is frustrated if subjects withhold the truth for fear that others will judge or punish them. The resulting bias is commonly referred to as social desirability bias, a subset of what we label sensitivity bias. We make three contributions. First, we propose a social reference theory of sensitivity bias to structure expectations about survey responses on sensitive topics. Second, we explore the bias-variance tradeoff inherent in the choice between direct and indirect measurement technologies. Third, to estimate the extent of sensitivity bias, we meta-analyze the set of published and unpublished list experiments (a.k.a., the item count technique) conducted to date and compare the results with direct questions. We find that sensitivity biases are typically smaller than 10 percentage points and in some domains are approximately zero.

†We thank Kosuke Imai and Rebecca Littman for many conversations on list experiments. We also thank Kirk Bansak, Jamie Druckman, Naoki Egami, Adam Glynn, Larry Hedges, Sophie Jacobson, Tyler Reny, Bryn Rosenfeld, Aaron Rudkin, and Lynn Vavreck, as well as audiences at the Q-Center and the Druckman Lab at Northwestern University, APSA, University of Tokyo Institute of Social Science, the Winter Experimental Social Science Institute, and the NYU CESS conference for helpful comments. Moor acknowledges the Yale ISPS Dahl Scholarship for support and Coppock acknowledges support from the Hoffenberg Fellowship at UCLA.

‡Graeme Blair is Assistant Professor of Political Science, University of California, Los Angeles. https://graemeblair.com

§Alexander Coppock is Assistant Professor of Political Science, Yale University. https://alexandercoppock.com

¶Margaret Moor is a graduate of Yale College, Class of 2018.
Scientific survey research traces its origins to George Gallup’s first nationwide sample survey in 1936. Since their introduction, researchers have worried that survey responses suffer from misreporting and nonresponse due to the sensitivity of some questions (Maccoby and Maccoby 1954). In a small number of well-documented cases, validation studies have demonstrated that survey estimates of sensitive traits may be distorted. For example, as discovered in the earliest National Election Studies, survey respondents overreport voter turnout by 10 to 15 percentage points (Campbell et al. 1960). In the other direction, one meta-analysis found that 30-70% of clinically-confirmed drug users underreport drug use (Tourangeau and Yan 2007).

We call this form of measurement error sensitivity bias. The vast extant literature on misreporting and nonresponse in sensitive settings often invokes the term “social desirability bias.” In our view, that term is imprecise. First, it leaves open to interpretation who desires a particular response and why a respondent would care. Second, it does not capture other sources of bias beyond conformity with perceived social norms, including monetary costs and threats to personal safety. In this paper, we build on frameworks from sociology, social psychology, and political science to advance a social reference theory of sensitivity bias that disentangles these considerations.

Cottage industries have emerged in nearly every social science discipline to address sensitivity bias, with approaches falling into three broad categories. First, survey researchers can change the form of the question with techniques like projective questioning (Haire 1950), randomized response (Warner 1965), or the list experiment, also known as the unmatched count technique and originally called the item count technique (Miller 1984). Second, they can change the social context in which the question is asked (Hatchett and Schuman 1975; Silver et al. 1986). Third, they can attempt to identify which types of people are most prone to giving false answers (Snyder 1987; Berinsky 2004). Each approach comes with costs, in terms of development and testing, survey duration, and statistical power. Despite 70 years of
methodological innovation, it remains difficult for researchers to decide whether sensitivity bias is likely to be a problem and if it is, how best to address it.

In this paper, we tackle these questions in three parts. First, we introduce a theory of sensitivity bias to structure thinking about whether bias is likely. Applying our theory to a given empirical setting requires articulating a social referent in particular (for example, the self, a spouse, neighbors, or the state), respondents’ perceptions of the likelihood that responses will be revealed (in part or in full) to that individual or group, and the perceived consequences of the revelations.

Second, the choice among measurement technologies to address sensitivity bias amounts to a bias-variance tradeoff (Warner 1965). Direct questions may be biased but they are low variance. Alternative question formats, such as the list experiment (Miller 1984), the randomized response technique (Warner 1965), or the cross-wise technique (Gingerich et al. 2016) may exhibit less bias but are higher variance. Because the list experiment is by far the sensitive question format of choice among political scientists, we restrict our discussion of the bias-variance tradeoffs first identified in Miller (1984) for the choice between direct questions and list experiments, but the broad strokes of our argument apply to these other formats as well. For a comparison of the bias and variance of these methods, see Rosenfeld et al. (2016).

Third, we compare 30 years’ worth of list experiments with direct questions in order to estimate the extent of sensitivity bias in many substantive domains. Our census of published and unpublished list experiments extends from the first list experiment published in 1984 up through the end of 2017, when we concluded data collection. This body of research covers topics of major interest to political scientists including racial prejudice, turnout, and vote buying, but also criminal behavior, sexual activity, and drug and alcohol use. Our results indicate that sensitivity bias is typically small to moderate, *contra* the evident expectation on either the authors’ or their real or imagined reviewers’ parts that misreporting
was a large concern. However, there is considerably heterogeneity in sensitivity bias across subject domains. We find evidence of overreporting of support for authoritarian regimes and suggestive evidence of overreporting for voter turnout, underreporting in vote buying and criticism of authoritarian regimes, but nearly no evidence of sensitivity bias in measures of prejudice.

Determining whether sensitivity bias is likely to be a problem in a particular domain is often a matter of intuition, conjecture, or previous theoretical expectations. Researchers can use our empirical results to recalibrate their expectations of sensitivity bias and to reassess their position on the bias-variance frontier. Even when we can be confident that list experiments generate unbiased prevalence estimates, they are far less accurate (in terms of mean-squared error) than direct questions at typical sample sizes.

A Social Reference Theory of Sensitivity Bias

Why do questions about sensitive topics in surveys yield biased responses? We develop a social reference theory of sensitivity bias that distinguishes between the sensitivity of the topic and the properties of the measurement tool (typically self-reported responses to direct questions in sample surveys).

To formalize sensitivity bias, imagine that a subject i harbors a latent true value of the sensitive trait D^*_i. The latent value may differ from the response that a subject would give if asked directly, D_i. We assume that D^*_i exists and that the survey question is designed with sufficient construct validity that subjects understand that researchers are asking subjects to report D^*_i. If the subject does not respond when asked, D_i is missing ($D_i = \text{NA}$). In the most general terms, measurement error occurs if $D_i \neq D^*_i$, i.e., if there is any slippage between the latent trait and the survey response. Measurement error may result from many different causes, including technical slip-ups, miscommunications between respondent and interviewer, respondent memory failures, or even deliberate falsification of responses by
survey staff. We are concerned here with the special form of measurement error that occurs when \(D_i \neq D_i^* \) because of the sensitivity of the question, which could result from either conscious or unconscious processes (Tourangeau and Yan 2007). When \(D_i^* \) is binary (the case we consider here), a common target of inference is the average value of \(D_i^* \), or the prevalence rate \(\pi^* \equiv \mathbb{E}[D_i^*] \). If survey reports are distorted by sensitivity bias, then direct questions may only estimate \(\pi \equiv \mathbb{E}[D_i \mid D_i \neq \text{NA}] \), which equals the prevalence rate plus a bias term. Sensitivity bias may be defined as \(\delta \equiv \pi - \pi^* \). If \(\delta \) is positive, direct questions exhibit overreporting and if \(\delta \) is negative, they exhibit underreporting. The difference \(D_i - D_i^* \) may vary by unit or subgroup, and sensitivity bias can be calculated by subgroup by taking the two expectations over a subset of units.

Our model of sensitivity bias requires that a (unique) latent value \(D_i^* \) exists for each subject. This assumption would be violated if subjects do not harbor specific attitudes and beliefs (even if they would respond when asked a question on a survey). Further, we do not consider settings with “multiple truths,” which would mean that \(D_i^* \) is random or vector-valued. In order to speak coherently about sensitivity bias, we have to imagine there is a true, scalar latent trait \(D_i^* \) that may or may not be different from the survey response \(D_i \).

The dominant explanation for sensitivity bias since the 1950s has been social desirability bias (Maccoby and Maccoby 1954). According to Fisher (1993, pp. 303), social desirability bias results from “the desire of respondents to avoid embarrassment and project a favorable image to others.” Goffman’s *The Presentation of the Self in Everyday Life* (1959) launched research inquiries across sociology and social psychology into the importance of impression management or self-presentation (for a review, see Leary and Kowalski 1990). Goffman argues that people have in their own minds an idea of how they are perceived by others and

\footnote{The magnitude of \(\delta \) can also be thought of as function of the prevalence rate \(\pi^* \) and the rate of false reporting. In the case of overreporting, \(\delta \) is the product of \(1 - \pi^* \) and the false reporting rate among those for whom \(D_i^* = 0 \); for underreporting, \(\delta \) is the product of \(\pi^* \) and the false reporting rate among those for whom \(D_i^* = 1 \).}
take actions to improve that perception. Social desirability bias is a behavioral manifestation of self-presentation. Beyond social desirability, scholars have identified self-image, the fear of disclosure of responses, and intrusive topics as additional causes of sensitivity bias.

Three elements of a survey jointly determine if an item will be affected by these biases: the topic of the question (is it sensitive or not), the format of the question (is the question asked directly and what assurances of anonymity are made), and the context in which it is asked (who is listening to responses, and who can read or hear them after the interview).

The last element highlights the fact that we must know with respect to whom respondents manage impressions. Psychologists and political scientists have developed and applied scales to measure person-constant levels of sensitivity bias and have shown that different people withhold at different rates (Snyder 1987; Paulhus 1991; Berinsky 2004). We interpret these findings as evidence of individuals’ idiosyncratic beliefs about relevant social referents. Respondents hold beliefs about who is asking questions, who sent the interviewers to ask, who can overhear the responses, and who can read responses after the interview is conducted. Beliefs may be heterogeneous across contexts and across respondents. For example, we demonstrate in the supplementary materials that respondents to the Afrobarometer vary widely in their perceptions of the survey sponsor.

Perhaps the most salient social referent for subjects is the interviewer asking the survey questions (Feldman et al. 1951). Subjects may presuppose (rightly or wrongly) that survey-takers have an opinion about what the correct attitude to hold is. Using randomized experiments, scholars have demonstrated interviewer effects for interviewer race (Hatchett and Schuman 1975; Cotter et al. 1982; Davis 1997), gender (Kane and Macaulay 1993; Catania et al. 1996; Huddy et al. 1997), and perceived religiosity (Blaydes and Gillum 2013). Bystanders, family members, coworkers, or others who may be within earshot constitute different sets of social referents (Silver et al. 1986). Subjects might feel constrained to respond in a particular manner or not at all if under the watchful eye of a spouse (Aquilino
Other more distant social referents may include those who will read responses after
the survey ends, such as the sponsoring institution or academic analysts (Corstange 2014);
consumers of the survey data including the media and the general public; or more worryingly,
the government or armed groups who might take punitive action depending on the response
(Lyall et al. 2013).

Social desirability is not the only source of sensitivity bias. First, respondents face pres-
sures that come from themselves, not only others (Greenwald and Breckler 1985). Second,
questions may be seen as intrusive, representing taboo topics respondents feel are out-of-
bounds (Tourangeau et al. 2000). For taboo topics, the act of responding, separate from the
content of the response, may itself be sensitive. In such cases, sensitivity bias may manifest
as nonresponse. Third, respondents may fear their responses will be disclosed to authorities
such as governments, criminals, armed groups, or employers. The worry here is not what is
socially desirable, but instead what is safe.

We synthesize these strands into a social reference theory of sensitivity bias. Sensitivity
bias occurs for a given respondent if and only if all four of the following elements are present:

1. A social referent (one or more people or organizations) the respondent has in mind
 when considering how to respond to a survey question. A social referent could be the
 respondent themself.

2. A respondent perception that the social referent can infer the subject’s response to the
 sensitive question either exactly or approximately.²

3. A respondent perception about what response (or nonresponse) the social referent
 prefers.

4. A respondent perception that failing to provide the response preferred by the social

²For a formalization of the idea that respondents may still misreport even if social referents can only
partially learn their responses, see Simpser (2017).
referent would entail costs to themself, other individuals, or groups. Costs may be social (embarrassment), monetary (fines), or physical (jail time or personal violence).

These four elements can help structure expectations about when to worry about sensitivity bias. These expectations, importantly, may vary across different types of respondents (for example, in some circles racist views may be something to hide, but in others something to flaunt). If respondents do not have social referents in mind, or if they truly believe their answers will remain confidential, or if they do not know the preferences of the referent, or if they perceive the referent to be powerless to inflict costs, then standard survey measures may be free of sensitivity bias. When all four elements are present, then articulating how they play out in a specific context can generate educated guesses about the plausible direction and magnitude of bias. These guesses can be tested empirically by collecting survey and focus group data from respondents about their second order beliefs about relevant reference groups or directly estimating sensitivity bias.

This theory helps to distinguish sensitivity bias from other forms of measurement error, such as the distinction between self-deception and recall failures (Holbrook and Krosnick 2010). If respondents misreport because they do not want to admit, even to themselves, that they participate in the sensitive behavior, direct questions will suffer from sensitivity bias. If however, respondents simply do not spend sufficient cognitive energy to recall whether, for example, they voted in the most recent midterm election, direct questions will be biased, but not because of sensitivity. The theory also helps us to understand how the same question may be sensitive in one context but not another. Respondents may perceive that different referents prefer different answers, which raises the possibility of cross-cutting sources of bias. Related to this point is the idea that sensitivity bias will depend on survey mode. The important social referents in a face-to-face household survey will likely differ from those in an online or telephone survey (Hochstim 1967).

A voluminous literature examines the link between implicit and explicit attitudes (Green-
wald and Banaji 1995; Greenwald et al. 1998). Since implicit attitudes are thought to operate at an unconscious level, respondents themselves may be unable to self-report them accurately. As a result, our theory likely applies to explicit attitudes and behaviors only (see also Littman 2015).

Sources of Sensitivity Bias in Four Political Science Literatures

In this section, we apply our theory to four political science research literatures in which sensitivity bias has been identified by researchers as a major source of measurement error. We reinterpret their reasoning through the lens of the four criteria for sensitivity bias. We present a (not necessarily exhaustive) list of social referents and how the criteria are applied in each literature in Table 1.

Clientelism in Developing Countries

The dominant mode of politics in many developing countries is clientelism, in which material goods are exchanged by politicians and voters in return for votes on an individual basis rather than on the basis of need as in programmatic political systems (for a review of accounts in political science, see Stokes 2007). The main behavior that characterizes clientelistic systems, vote buying, is by its nature hidden. As a result, survey research – asking voters if they exchanged their vote for goods – is required both to measure its prevalence and whom is targeted by offers of exchange (Weitz-Shapiro 2012).

A recent flurry of scholarship has probed whether survey measures of vote buying are distorted by sensitivity bias. Vote buying is illegal in most places, so respondents may have a reasonable fear of prosecution (Mexico, Imai et al. 2014; Lebanon, Corstange 2017; Singapore, Ostwald and Riambau 2017; Nicaragua, Gonzalez-Ocantos et al. 2012; Hungary and Romania, Mares and Young 2019). In some contexts, however, voters may not be
Respondent beliefs

Clientelism: “Did you exchange your vote for money, gifts, or services?”

<table>
<thead>
<tr>
<th>Social referent</th>
<th>Referent can learn about answer</th>
<th>Referent’s preferred answer</th>
<th>Cost if preferred answer not provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interviewer</td>
<td>Yes, provided directly</td>
<td>No</td>
<td>Self presentation</td>
</tr>
<tr>
<td>State authorities</td>
<td>Possibly, depending on anonymity protections</td>
<td>No</td>
<td>Legal sanction</td>
</tr>
<tr>
<td>Neighbors</td>
<td>Possibly, depending on anonymity protections</td>
<td>No</td>
<td>Self presentation</td>
</tr>
<tr>
<td>Politician(s) who exchanged vote</td>
<td>Possibly, depending on anonymity protections</td>
<td>No</td>
<td>Will not offer exchange in future</td>
</tr>
</tbody>
</table>

Prejudice: “Would you feel angry or upset if a black family moved in next door to you?”

<table>
<thead>
<tr>
<th>Social referent</th>
<th>Referent can learn about answer</th>
<th>Referent’s preferred answer</th>
<th>Cost if preferred answer not provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interviewer</td>
<td>Yes, provided directly</td>
<td>No</td>
<td>Self presentation</td>
</tr>
<tr>
<td>Self</td>
<td>Yes</td>
<td>No</td>
<td>Self image</td>
</tr>
</tbody>
</table>

Support for authoritarian regimes: “I voted for Vladimir Putin in the most recent Presidential elections.”

<table>
<thead>
<tr>
<th>Social referent</th>
<th>Referent can learn about answer</th>
<th>Referent’s preferred answer</th>
<th>Cost if preferred answer not provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>State authorities</td>
<td>Possibly, depending on anonymity protections</td>
<td>Yes</td>
<td>State repression</td>
</tr>
</tbody>
</table>

Voter turnout: “In the presidential election of November 8, 2016, did you vote?”

<table>
<thead>
<tr>
<th>Social referent</th>
<th>Referent can learn about answer</th>
<th>Referent’s preferred answer</th>
<th>Cost if preferred answer not provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interviewer</td>
<td>Yes</td>
<td>Yes</td>
<td>Self-presentation</td>
</tr>
<tr>
<td>Household members within earshot</td>
<td>Possibly, depending on anonymity protections</td>
<td>Yes</td>
<td>Self presentation</td>
</tr>
<tr>
<td>Self</td>
<td>Yes</td>
<td>Yes</td>
<td>Self image</td>
</tr>
</tbody>
</table>

Table 1: Possible sources of sensitivity bias in four political science literatures.

Concerned about the illegality of vote buying because of lax enforcement. For example, in a study of vote buying in the Philippines, Cruz (2019) speculates that the low levels of sensitivity bias in direct questions about the practice may be explained by the high prevalence of vote buying or because, “laws that forbid it are rarely enforced in the Philippines” (pg. 390). Respondents may be reluctant to admit selling their vote because of “the implication that they are poor enough to sell their votes” (Stokes 2005, pg. 321). Similar logics have been forwarded for Lebanese (Corstange 2017) and Nicaraguan (González-Ocantsos et al. 2015) respondents. Beyond the possible association with low socio-economic standing, respondents may wish to avoid being seen as a participant in an immoral or unethical behavior (Mares...
et al. 2016) or to “acknowledge that the handout influenced their vote” (Brusco et al. 2004, pg. 69). Respondents may also wish to avoid appearing to have violated perceived social norms about behavior as a democratic citizen (Kramon 2016). Finally, Frye et al. (2014) highlights in the Russian case that respondents may have in mind their employer as a social referent, who may have special levers of retaliation.

Prejudice

The frequency and intensity of outright expressions of racial prejudice towards black Americans by white Americans has declined over time, but the causes and consequences of this change remain sources of scholarly and public debate (Bobo 1988; Schuman et al. 1997). A central theme of the debate is whether old-fashioned racism has been supplanted by a modern form of racism or if little has changed but whites’ willingness to express their racist views in public (Kinder and Sears 1981; Tesler 2012). The survey research in this literature is beset by deep measurement difficulties, including disagreements about what the relevant theoretical constructs are and what survey questions might measure them (Sniderman and Tetlock 1986). One point of agreement, however, is that sensitivity bias could undermine any of the measures if respondents believe that interviewers prefer a particular answer and would judge the respondent to be a racist if that answer were not given. For this reason, the prediction is that, if anything, respondents underreport racist attitudes. The measurement problem is compounded by the difficulty (or impossibility) of separating attitudes towards policies like welfare or affirmative action from racial attitudes (Gilens 2009). However, if respondents think interviewers think those policy views are the result of racist attitudes, sensitivity bias could infect measures of policy attitudes regardless of the true causes of policy views.

The usual logic of sensitivity bias for racial attitudes extends directly to possible biases in measures of attitudes in other domains such as sexual orientation and religion. Respondents
may wish to avoid being seen as retrograde or bigoted, so they may overreport positive attitudes and underreport negative attitudes. Especially in view of the dramatic shifts in public opinion on same-sex marriage, it is reasonable to wonder whether some or all of these changes can be attributed to sensitivity bias (Powell 2013). Similarly, religious tolerance and respect for members of other faiths is a widely expressed value in many cultures. The evident social and cultural divisions along religious lines raise the possibility that survey affirmations of religious tolerance are disingenuous (Kane et al. 2004).

Support for Authoritarian Regimes

At the heart of many models of authoritarian politics is the need for dictators to assess public opinion in order to predict and prevent revolution. The regime faces what Wintrobe (2000) calls the “dictator’s dilemma,” in which the regime needs to know its true support to maintain stability, but publicly revealing dissatisfaction may itself lead to instability. As a result, dictators may exert pressure on citizens to profess higher levels of regime-support opinions than they truly hold (a phenomenon labeled “preference falsification,” see Kuran 1997) and prevent polls that reveal low levels of support from being conducted or published. A casual inspection of recent polls on leader approval suggests this is exactly what is happening. High-quality surveys from Russia’s only independent polling agency (Yuri Levada Analytical Center 2019) estimate Russian support for President Vladimir Putin at 89 percent. According to the 2012-13 World Values Survey China, support for the central government in China is a full 93 percent (Tang 2016). The four sensitivity bias criteria are plausibly met in this setting: (1) the regime is a top-of-mind social referent when answering questions; (2) regime informants can plausibly uncover responses to surveys; (3) citizens know the responses the regime prefers, learned through propaganda; and (4) costs may

3A similar problem is faced by opposition supporters, whose risky choice to protest or otherwise dissent may depend on the difficult-to-estimate level of public support for their cause. Indeed, in some accounts of the fall of the Berlin Wall, revolution only occurred following small protests in Leipzig, which revealed to East Germans their shared antipathy to the regime and willingness to act for change (Lohmann 1994).
include harassment, imprisonment, or worse (Frye et al. 2017; Chen and Yang 2018).

Voter Turnout

From the earliest investigations into voter behavior in America, scholars have documented that estimates of voter turnout based on survey self-reports are upwardly biased. Campbell et al. (1960, pp. 93-96) report that 74% of the first National Election Study (1952) sample reported voting, whereas the official turnout rate in that election was only 63% (this pattern persists, see Vavreck 2007). Recent work has shown that this problem affects voter participation research in developing democracies (Adida et al. 2019). The possible sources of error between the survey prevalence rate and the true turnout rate are many: survey nonresponse, item nonresponse, or misreporting. Distinguishing between these sources of error was frustrated by the difficulty of matching survey respondents to individual voter file records. Some of these technical challenges have been overcome and the most recent studies have concluded that misreporting is a major contributor to the discrepancy (Ansolabehere and Hersh 2012; Enamorado and Imai 2018). Misreporting itself may or may not be due to sensitivity bias as we have conceived of it here. Holbrook and Krosnick (2010) subdivides misreporting into “memory errors” and “social desirability bias.” Memory errors occur when respondents do not invest the cognitive effort to be sure they did or did not vote in a particular election. It is possible that respondents remember having voted in some past election and so are more likely to respond yes when asked if they participated in a particular election. Belli et al. (1999) show that some direct question wording variants are able to reduce memory errors of this sort. The list experiment is *not* designed to help with reducing memory errors, but may give subjects cover to admit to survey takers that they did not vote. Because whether or not a person has voted is public, subjects are unlikely to be specifically worried about state authorities discovering their survey response. Therefore, the social referents that a survey subject must have in mind are the interviewers, household
members within earshot of the interview, and themselves. In all cases, we imagine that the perceived cost of the social referent learning (or re-learning, in the case of the “self” social referent) is shame at having failed in a civic duty.

List Experiments to Reduce Sensitivity Bias

The list experiment, also known as the item count technique and the unmatched count technique, hides individual responses to a binary sensitive item by aggregating them with the answers to several binary control items. Subjects are randomly assigned to treatment and control groups. Those in the control group report how many of a list of control items apply to them; treatment group subjects report how many of a list of the control items plus an additional sensitive item apply to them. The prevalence rate of the sensitive item can be estimated by calculating the difference in the average response given by each group.

This technique mitigates sensitivity bias by hiding the sensitive item response from many possible social referents, including the interviewer, bystanders, or later data consumers, except in the case of floor and ceiling responses (Miller 1984; Kuklinski et al. 1997). The list experiment does not address all sources of sensitivity bias. Intrusive questions may still generate bias because the text of the question includes the same sensitive item text as the direct question. Further, because the list experiment does not hide answers from the respondents themselves, the method will not reduce sensitivity biases arising from self-image concerns.

We illustrate the logic of the list experiment with an example. Kramon (2016) reports on a nationally-representative survey of 1,927 Kenyans administered after the 2007 Kenyan elections. The survey focuses on estimating the proportion of voters who experienced vote buying attempts during the election. To do so, the authors use a list experiment and a direct question. Respondents were randomized into a control group or one of two treatment

4We present a formalization of the list experiment and recapitulate the list experiment assumptions of “No liars” and “No design effects” in the supplementary materials (see also Imai 2011).
groups. In the control group, respondents were read the following instructions:

Election campaigns are a busy time in our country. I am going to read you a list of some of things that people have told us happened to them during the 2007 campaign. I am going to read you the whole list, and then I want you to tell me how many of the different things happened to you. Please do not tell me which of the things happened to you, just how many. If you would like me to repeat the list, I will do so.

1. Politicians put up posters or signs in the area where you live.
2. You read the newspaper almost every day to learn about the campaign.
3. You met a politician personally to discuss his or her candidacy.
4. You discussed the campaign with a chief or another traditional leader.

In the “Influenced” treatment group, the same script was read but with a fifth item added to the list.\(^5\)

5. You voted for a party or politician because they gave you money during the campaign.

In the “Received” treatment group, the fifth item read:

5. You received money from a party or politician.

Using data from the Kramon (2016) postelection survey in Kenya (shown in Table 2), we estimate the prevalence rate of vote buying, the main quantity of interest in the study.

\(^5\)Typically, item order is randomized and the sensitive item is not necessarily the last item.
Figure 1: Estimated prevalence of vote buying from the list experiments and the direct question for two sensitive items presented in Kramon (2016): whether the respondent received a bribe and whether a bribe influenced the respondent’s vote.

Figure 1 presents the results. The “influence” question appears to be affected by sensitivity bias. The list experiment estimate, while imprecisely estimated, is definitively higher than the direct question estimate. By contrast, the direct and list experiment estimates of the proportion of respondents who received money from parties or politicians are quite similar.

Tradeoffs in the Choice of Measurement Design

The choice between list experiments and direct questions presents a bias-variance tradeoff. Direct questions may be biased, but they produce low-variance estimates. Under their identifying assumptions, list experiments are unbiased, but high variance.

Consider a study of N subjects with a true prevalence rate (π^*) in which the direct question has a sensitivity bias (δ). D_i is the response that subject i gives to the direct question. The direct question estimator $\hat{\pi}$ is the sample mean, $\hat{\pi} = \frac{1}{N} \sum_{i=1}^{N} D_i$. The variance

6In some cases, the sign and plausible magnitude of the bias may be known, which could enable researchers to recalibrate their prevalence estimates.
of the direct question estimator ($\hat{\pi}$) is given by

$$V(\hat{\pi}) = \frac{1}{N-1}\left\{\pi^*(1-\pi^*) + \delta(1-\delta) - 2(\delta - \pi^*\delta)\right\}$$ (1)

The variance of the list experiment estimator $\hat{\pi}^*$ under a balanced design (in which exactly half of the units are assigned to the treatment list) is given by:

$$V(\hat{\pi}^*) = \frac{1}{N-1}\left\{\pi^*(1-\pi^*) + 4V(Y_i(0)) + 4\text{cov}(Y_i(0), D_i^*)\right\}$$ (2)

where $V(Y_i(0))$ is the variance of the control item count and $\text{cov}(Y_i(0), D_i^*)$ is the covariance between the control item count and the true sensitive item response. See the supplementary materials for derivations of these variance expressions.

Plugging in $N = 2,000$, $\pi^* = 0.5$, and $\delta = 0.1$ and taking the square root yields a standard error of the direct question estimator of 0.0111, or 1.11 percentage points. Using the average values of the variance of the control items (0.075) and their covariance with D_i^* (0.025) estimated from the set of studies in our meta analysis, we obtain a standard error for the list experiment of 0.0416, or 4.16 percentage points. For the same number of subjects, the list experiment is $(4.16/1.11)^2 \approx 14$ times more variable than the direct question. Stated differently, a researcher would need a sample of 28,000 subjects in order to produce a list experiment estimate as precise as the direct question with 2,000. The intuition for this stark shortcoming of the list experiment is that only half the sample is asked about the sensitive item and their responses are further obscured by adding noise (the control count).

This bias-variance tradeoff interacts with the goal of the research. We identify four main goals: estimating a prevalence rate, demonstrating the presence of sensitivity bias, estimating the difference in prevalence rates across groups, and estimating the difference in sensitivity
bias across groups.

When the primary research goal is obtaining a good estimate of the prevalence rate of a sensitive item (e.g., Gervais and Najle 2018, who sought to estimate the proportion of U.S. residents who identify as atheist), it is unclear whether the direct question or the list experiment will render estimates that are closer to the true prevalence rate in terms of root mean squared error (RMSE). The two important parameters that govern which approach will be closer are the extent of bias and the sample size of the study. The left panel of Figure 2 provides a visual explanation of how these factors interact. All else equal, the higher the true bias of the direct question, the more we prefer the list experiment. However, for many sample sizes, the direct question has lower RMSE, even in the face of substantial sensitivity bias. The line in the figure describes the bias/sample size combination at which researchers should be indifferent between the two methods on the basis of RMSE. For a study with 1,000 subjects, the bias must be greater than 5.5 points to prefer a list experiment; at 2,000, the bias must be greater than 4 points. Figure 2 is generated assuming a true prevalence rate of 0.5, but because of the relatively small influence of the true prevalence rate on the variance of the list experiment, the results are quite similar regardless of prevalence rate.

Another goal in some settings is to show that a particular domain is or is not plagued by sensitivity bias by conducting both a direct question and a list experiment and comparing the results. For example Lax et al. (2016) find that the estimated sensitivity bias for same-sex marriage could not be distinguished from zero. The main design parameters that govern the power of this procedure to detect sensitivity bias are again the true level of bias and the sample size. The left panel of Figure 2 plots the bias / sample size combinations at which the power to detect sensitivity bias is 80%. At 1,000 subjects, the bias would need to exceed 16 percentage points in order to reach 80% power; even at a sample size of 2,000, power to

7Other uses of sensitive questioning techniques include using the predicted values of the sensitive items as predictors in a regression, as in Imai et al. (2014).
detect biases of 10 percentage points is well below the conventional power target.

Many social scientific theories predict that prevalence rates will differ according to subgroups defined by individual-level covariates such as race, gender, or political orientation. Further, some experimental interventions are designed to change whether or not a person holds an attitude or engages in a behavior. Interestingly, for a comparison of direct question responses to generate biased estimates of the difference in prevalence rates across groups, sensitivity must affect responses in each group differently, since otherwise, the biases would cancel each other out when the group prevalence rates are differenced. In order for sensitivity to vary across groups, respondent beliefs about social referents – their preferences, their ability to monitor, or the costs they impose – must be heterogeneous.

In such cases, researchers can employ a list experiment to measure outcomes, then estimate the difference in prevalence rates using an interaction model. As described in Samii
(2012), however, this estimator has extremely high variance. Figure 3 shows that the power to detect even substantial differences in prevalence rates is abysmal. Differences must exceed 25 percentage points before a 2,000 unit study has 80% power to detect them; they must be 20 points or more in the case of a 3,000 unit sample. Conclusively demonstrating that two groups have different prevalence rates requires extreme differences and very large samples.

Some studies hypothesize not differences in the prevalence rates across sub-groups but rather differences in sensitivity bias. For example, Lax et al. (2016) study “whether social desirability effects differ by a respondent’s partisan identification and religious affiliation,” for example, and Kiewiet de Jonge (2015) studies how sensitivity bias varies by income level. As panel (b) of Figure 3 shows, such tests are also quite sample hungry.

![Figure 3: Power to Detect Differences in Prevalence Rates or Differences in Sensitivity Bias between Groups is Low Except When the Difference or the Sample Size is Very Large.](image-url)

Figure 3: Power to Detect Differences in Prevalence Rates or Differences in Sensitivity Bias between Groups is Low Except When the Difference or the Sample Size is Very Large. On the y-axes is the difference in either the prevalence rate or the sensitivity bias between the two groups, which determines the power to detect the difference.
Improving the Power of the List Experiment Design

After introducing the technique, Judith Droitcour Miller wrote in her 1984 dissertation that “the variance of the item-count estimator is potentially high” (pg. 67). She noted that the loss of power comes from aggregating the sensitive item with other items and measuring only the count, and the fact that “reports of deviant behavior are collected from only half of the total sample” (pg. 57). She laid out a series of practical suggestions for constructing the lists and alternative designs to reduce the variance. Many of these ideas have been taken up by survey methodologists in the decades since. In this section, we describe each modification in terms of the effective sample size improvement over the standard design, allowing a direct comparison of designs using a common metric.

Just after introducing the standard design, Miller (1984) proposed the double list experiment design, in which all subjects participate in two list experiments with different control items but the same sensitive item (see also Droitcour et al. 1991; Glynn 2013). Subjects are randomly assigned to see the treatment list in one experiment but not the other; the combined estimate has approximately 50% the variability of the equivalent single list experiment.

Miller (1984) offers detailed guidance on selecting control items to reduce the variance of the list experiment. These include trading off the length of the lists with privacy protection, selecting low variance and low prevalence items to avoid many respondents answering at the floor (“no” to all items) or ceiling (“yes” to all items), inducing negative correlation across items within the list, and inducing positive correlation between the two lists in a double list design (pg. 68-70). These list design tips are further explored in more recent methodological work (Blair and Imai 2012; Glynn 2013).

Other scholars have introduced methods for combining list experiments with other sources of information. Blair et al. (2014) proposes a combined list and endorsement experiment that succeeded in reducing variance by 12%. Aronow et al. (2015) derive a method for combining
<table>
<thead>
<tr>
<th>List Experiment Design</th>
<th>% Variance Reduction</th>
<th>% Increase in Effective Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double list experiment (Miller 1984)</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Control item advice (Miller 1984; Glynn 2013)</td>
<td>40% - 55%</td>
<td>70% - 122%</td>
</tr>
<tr>
<td>Combined list and endorsement experiment design (Blair et al. 2014)</td>
<td>12%</td>
<td>14%</td>
</tr>
<tr>
<td>Combined list experiment and direct question design (Aronow et al. 2015)</td>
<td>12% - 50%</td>
<td>14% - 100%</td>
</tr>
<tr>
<td>Using auxiliary information (Chou et al. 2018)</td>
<td>88%</td>
<td>733%</td>
</tr>
</tbody>
</table>

Table 3: Variance reductions and increases in effective sample size from alternative list experiment designs.

list and direct questions by conducting a list experiment among those subjects who do not directly admit to the sensitive trait. In their applications, the combined estimator decreased variance by 12% to 50%. Chou et al. (2018) provide a generalization of Aronow et al. (2015) to any subgroup among whom the true prevalence rate is known. In their application to support for an antiabortion ballot measure, auxiliary information in the form of known vote totals reduced the variance of the list experiment by 88%.

Model-based methods to reduce the variance of the list experiment include the linear regression, non-linear least squares, and maximum-likelihood models proposed in Imai (2011). Maximum likelihood models have also been proposed for the LISTIT design (Corstange 2009; Blair and Imai 2012). Table 3 shows how each of these methods help to decrease variance and increase effective sample sizes. The feasibility of each improvement will vary depending on the application; sometimes unavoidable features of the setting will cause violations of the specific assumptions invoked by each design.

Table 3 can be used in conjunction with Figures 2 or 3 to guide sample size decisions for list experiments that employ these alternative designs. At a given nominal sample size, we can look up what the effective sample size will be, then reference the figures to determine if a list experiment is an appropriate measurement tool for a given research scenario.

8The LISTIT design likely also increases precision relative to the conventional design, but we were unable to include it in Table 3 because we lack empirical estimates of the extent of variance reduction.
Meta-Analysis Research Design

In this section, we present a meta-analysis of list experiments to characterize the level of sensitivity bias in four political science literatures: turnout; prejudice on the basis of race, religion, and sexual orientation; vote buying; and political attitudes in authoritarian contexts. To do so, we compare responses to questions asked directly and in a list experiment. Within each research literature, we present the empirical distribution of estimated bias and summarize this distribution using random-effects meta-analysis. We use this evidence to assess where each research area falls on the bias-variance tradeoff. These estimates can be used to help researchers make context-specific decisions about survey question designs.

We attempted a census of all list experiments ever conducted, published or otherwise, as of December 31st, 2017. We certainly failed in this task. At a minimum, colleagues have told us of list experiments that were never written up and whose data are long since lost. We searched Google Scholar, SSRN, Dataverse, and seven years of political science conference programs with the search terms “list experiment,” “item count technique,” and “unmatched count technique,” and their abbreviations. In addition, we traced citations from several influential early papers on list experiments including Judith Droitcour Miller’s dissertation which introduced the technique and from each of the studies identified in our keyword searches. Our search yielded 487 distinct experiments in 154 separate papers. We were able to obtain both direct question and list experiment estimates in 285 cases. We limit all analyses to the 264 (92 papers) list experiments whose sensitive item was predicted by the researchers to be over- or under-reported, excluding non-sensitive topics.

We gathered statistical information about the list experiments using a cascading data collection approach. In the best case, we obtained the replication dataset from online journal appendices, Dataverse, authors’ personal websites, or private communication. When replication data were not available, we searched the paper for crosstabs of list experiment
responses by treatment condition (similar to Table 2). For those studies, we calculated the
difference-in-means estimate of prevalence and its standard error. Finally, if neither the data
nor the crosstab were available, we searched the paper for the estimated prevalence rate and
its standard error. In the rare case that a study reported a prevalence rate estimate but no
standard error, we imputed our best guess based on a flexible regression model.

Publication bias arising from the file-drawer problem has, anecdotally, been a concern
in the list experiment literature. In the course of our data collection, we heard from many
scholars who claimed to have “not found anything” when using a list experiment and so
chose not to pursue publication. Our main approach to this problem was to energetically
seek out published and unpublished studies. Nevertheless, we are sure that we have missed
some studies that were conducted but for whatever reason were never written up. Reasoning
about the impact of selection into our meta-analysis is complex for at least two reasons.
First, many studies had multiple inferential goals (estimating a prevalence rate, demonstrat-
ing the existence of sensitivity bias, measuring group differences in prevalence rates, or some
combination of these) and it was not obvious which, if any, was the primary driver of pub-
lication incentives. For this reason, we do not present diagnostics such as funnel plots or
p-curves. Funnel plots require a common quantity of interest thought to be subject to the
publication filter and p-curves require a common theoretical null distribution of p-values.
Secondly, it is not always clear which result – null or significant – is theoretically congenial
in a given setting. Some theories predict the absence of sensitivity bias (e.g., Coppock 2017)
while others predict its presence (e.g., Gonzalez-Ocantos et al. 2012), so intuiting how the
file-drawer problem may distort our meta-analysis is challenging.

The direct question estimates of prevalence all come from the original authors. The
majority of studies asked the direct question to either their entire sample or a random subset;
three of our studies referred to a direct question estimate obtained by others. We logged
whichever direct question estimate was reported by the original authors. We elected not
to independently obtain direct question prevalence estimates (e.g., from publicly-available surveys) as such discretion could lead to the perception that we were seeking to obtain a pattern either favorable or unfavorable to list experiments. We acknowledge that relying on original authors about whether and which direct questions to report introduces a second source of selection in addition to publication bias.

Our measure of sensitivity bias is the difference between the list and direct estimates. We estimated the standard error of the difference as $SE(difference) = \sqrt{SE(list)^2 + SE(direct)^2}$. This formula assumes that the direct and list estimates are independent; this assumption will be mildly violated if both the direct and list estimates are calculated using data from the same respondents. Under the assumption that direct and list estimates are positively correlated, our naive estimates of sampling variability are conservative by the properties of the variance of the difference in two random variables. We calculated a 95% confidence interval for the difference under a normal approximation.

We first categorized studies by substantive domain, then by the expected direction of sensitivity bias: overreporting or underreporting. Wherever possible, we relied on the logics of misreporting forwarded by the original authors and in rare cases had to substitute our own best judgment. Theoretically speaking, the direction of sensitivity bias need not be constant across respondents (Lax et al. 2016), though in the vast majority of the empirical papers we reviewed, the bias was presumed to have the same sign (if not the same magnitude) for all subjects.\footnote{We also coded the mode of survey administration for each study. Subjects may have different social referents in mind depending on whether the survey was conducted face-to-face, over the telephone, online, or was self-administered, so the extent of sensitivity bias may depend on this important survey design feature (Hochstim 1967; Tourangeau and Yan 2007). However, we found in our data that survey mode is highly correlated with substantive domain, frustrating our ability to empirically evaluate this theoretical expectation (see Table H8 in the Supplementary Materials).}

To summarize the distribution of estimated differences, we implement a standard random-effects meta-analysis model (DerSimonian and Laird 1986). We model observed differences
y between list and direct with a normal distribution: $y \sim \mathcal{N}(\delta, \sigma)$ where σ is the observed standard error and δ represents the true sensitivity bias for a given study. We model bias as $\delta \sim \mathcal{N}(\mu, \tau)$. The parameters of this distribution are μ, the grand mean of sensitivity bias and τ, the standard deviation of true effect sizes. We conduct Bayesian estimation using Stan (Carpenter et al. 2017), adopting the default improper uniform priors for δ, μ and τ, and restricting τ to be non-negative. We assess convergence by running four parallel chains and using the standard R-hat criterion. We calculate several quantities of interest from this model. First, we estimate the average amount of sensitivity bias (μ), its standard error, and 95% credible interval. Second, we estimate the distribution of sensitivity bias, not just its mean, since the true level of bias could vary across context and topic. We calculate predictive intervals that bracket our best posterior guesses of the middle 50% and 95% of the distribution of true sensitivity biases. These ranges help us to characterize what the corpus of list experiments conducted to date teaches us about typical levels of sensitivity bias across contexts.

In order to interpret the difference between list experiments and direct questions as a measure of sensitivity bias, we make several auxiliary assumptions in addition to the standard assumptions of the list experiment. We assume no differential nonresponse between questions. We assume there are no order effects. We assume that differences in question wording of the sensitive item do not affect responses. Finally, we assume that the list experiment and direct question were asked of the same sample, or of two samples from the same population. If these additional assumptions are violated, the difference is still meaningful, but the difference itself can no longer be considered an estimate of sensitivity bias. If readers are unwilling to make these auxiliary assumptions, then our meta-analysis is still of use as a summary of how much the two measurement technologies differ.
Table 4: Meta-analysis estimates of sensitivity bias

We include all studies for which we can estimate the sensitivity bias in the meta-analytic estimates for overreporting and for underreporting. We do not break out studies for other categories, which all have fewer than three studies.

<table>
<thead>
<tr>
<th></th>
<th>Prediction</th>
<th>Average Sensitivity Bias $\hat{\mu}$</th>
<th>Predictive Intervals $N(\hat{\mu}, \hat{\tau})$</th>
<th>50%</th>
<th>95%</th>
<th>N studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(s.e.)</td>
<td></td>
<td>50%</td>
<td>95%</td>
<td>N studies</td>
</tr>
<tr>
<td>Vote buying</td>
<td>Underreporting</td>
<td>-0.08 (0.02)</td>
<td>[-0.13, -0.04]</td>
<td>[-0.14, -0.03]</td>
<td>[-0.25, 0.08]</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Overreporting</td>
<td>0.07 (0.04)</td>
<td>[-0.02, 0.14]</td>
<td>[0.00, 0.13]</td>
<td>[-0.12, 0.26]</td>
<td>10</td>
</tr>
<tr>
<td>Turnout</td>
<td>Underreporting</td>
<td>0.04 (0.03)</td>
<td>[-0.03, 0.09]</td>
<td>[0.01, 0.07]</td>
<td>[-0.05, 0.13]</td>
<td>9</td>
</tr>
<tr>
<td>Racial prejudice</td>
<td>Underreporting</td>
<td>-0.01 (0.03)</td>
<td>[-0.07, 0.04]</td>
<td>[-0.05, 0.03]</td>
<td>[-0.13, 0.10]</td>
<td>12</td>
</tr>
<tr>
<td>Religious prejudice</td>
<td>Underreporting</td>
<td>-0.01 (0.03)</td>
<td>[-0.08, 0.06]</td>
<td>[-0.08, 0.06]</td>
<td>[-0.22, 0.20]</td>
<td>16</td>
</tr>
<tr>
<td>Sexual orientation prejudice</td>
<td>Underreporting</td>
<td>-0.02 (0.08)</td>
<td>[-0.18, 0.14]</td>
<td>[-0.12, 0.08]</td>
<td>[-0.30, 0.27]</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Overreporting</td>
<td>0.14 (0.03)</td>
<td>[0.07, 0.21]</td>
<td>[0.05, 0.24]</td>
<td>[-0.14, 0.42]</td>
<td>21</td>
</tr>
<tr>
<td>Support for authoritarian regimes</td>
<td>Underreporting</td>
<td>-0.08 (0.04)</td>
<td>[-0.16, 0.00]</td>
<td>[-0.16, 0.00]</td>
<td>[-0.32, 0.16]</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Overreporting</td>
<td>0.12 (0.02)</td>
<td>[0.08, 0.15]</td>
<td>[0.03, 0.20]</td>
<td>[-0.13, 0.36]</td>
<td>68</td>
</tr>
<tr>
<td>All results</td>
<td>Underreporting</td>
<td>-0.04 (0.01)</td>
<td>[-0.05, -0.02]</td>
<td>[-0.11, 0.04]</td>
<td>[-0.26, 0.19]</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>Overreporting</td>
<td>0.12 (0.02)</td>
<td>[0.08, 0.15]</td>
<td>[0.03, 0.20]</td>
<td>[-0.13, 0.36]</td>
<td>68</td>
</tr>
</tbody>
</table>

Meta-Analysis Results

We present three sets of results. First, we summarize the estimated level of sensitivity bias in the four research literatures discussed above: vote buying, voter turnout, prejudice on the basis of race, religion, and sexual orientation, and support for authoritarian regimes. We present the study-level estimates, the meta-analysis estimate, and the predictive interval in each case. Second, we analyze all studies for which we have sufficient information according to whether authors predicted sensitivity bias in the form of overreporting or underreporting. These two analyses allow us to answer the question of whether we should worry about sensitivity bias in a given research context. Third, we integrate our empirical results with the design advice given above to describe where the typical study appears to fall on the bias-variance tradeoff, allowing us to answer the question of whether list experiments or direct questions are a better choice in a specific research scenario. We present our full results in Figure 4 and summarize them in Table 4.
Figure 4: Sensitivity Bias in Four Political Science Research Literatures. Estimated sensitivity bias in each study with 95% confidence intervals, with point size proportional to study weight in meta-analysis (top panel). Estimated average sensitivity bias in each literature (diamond) with 95% credible interval (bottom panel) and estimated 50% (thick gray line) and 95% (thin gray line) predictive intervals for sensitivity bias.
Sensitivity Bias in Four Political Science Literatures

Clientelism in Developing Countries We begin our summary of results with the literature on clientelism. Across 19 studies, we find evidence of moderate underreporting of vote buying. We display this result in Figure 4 (a), which we walk through slowly for this first example.10 The top panel of the subfigure presents the estimated level of sensitivity bias for each study (black points), calculated by subtracting the list experiment estimate from the direct question estimate. Under the assumptions laid out above, negative values indicate that the list experiment recovered a higher prevalence rate than the direct question, revealing underreporting due to sensitivity bias. For example, in the top row of Figure 4 (a), sensitivity bias is estimated to be 5 percentage points (95% CI -3 to +14) based on a 2010 survey conducted in Bolivia in which the sensitive question read “They gave you a gift or did you a favor” (Kiewiet de Jonge 2015). The size of the plotted points is proportional to the weight the study is accorded in the meta-analysis.11 The size of the point represents how informative the study is, which is also reflected in the width of the confidence interval: the wider the confidence interval, the smaller the point.

We present two summaries of these estimates of sensitivity bias in the bottom panel. In the top row is the estimated average sensitivity bias across studies for vote buying questions (black diamond), -8 points with a 95% credible interval stretching from -13 to -3 points. This is our best guess of the level of sensitivity bias that would be found in a future studies absent additional contextual information. As is clear from the dispersion of the study-level estimates that range from -24 points to +5 points, the sensitivity bias attending to vote buying questions differs from context to context. In the bottom row of Figure 4 (a), we show the 50% predictive interval from -14 to -2 points and the 95% predictive interval from -27 to

10 Full-size versions of the panels in Figure 4 with additional study information are included in the Supplementary Materials.

11 The weights are calculated as, $\frac{1}{\hat{\sigma}^2 + \hat{\tau}^2}$, where $\hat{\sigma}^2$ is the square of the observed standard error of the study and $\hat{\tau}^2$ is the estimated variance of the true sensitivity bias across studies.
+10 points. Again, these intervals are different from confidence intervals in that they describe our best guess about the distribution of sensitivity biases in vote buying questions, and not our uncertainty about the average level of bias. In summary, the theoretical prediction of underreporting bias in direct questions about vote buying is supported on average, but there is also a considerable range of bias from very large to none at all.

Voter Turnout Consistent with theory and the evidence from explicit validation studies, our posterior estimate based on 10 studies is that voter turnout is overreported by +7 percentage points, but the confidence interval on the meta-analytic average crosses zero. This uncertainty is also reflected in the very wide predictive intervals: the 50% intervals is 13 points wide and the 95% interval is 45 points wide. We interpret this evidence to indicate that at most a small proportion of the measurement error that others have documented by comparing survey responses to validated turnout records from the voter file is due to sensitivity bias, as opposed to memory or recall failures.

Prejudice After the study of drug use (Miller 1984), one of the earliest uses of the list experiment was the study of prejudice, specifically prejudice on the basis of race (Sniderman et al. 1991). Since then, list experiments have been used to study prejudice towards many subgroups within society. We measure sensitivity bias in three domains: prejudice on the basis of race, religion, and sexual orientation. Contrary to expectations, we find relatively little evidence of bias, at least for the specific set of direct questions that have been tested. We were frankly quite surprised at the low levels of sensitivity bias we estimated for all three forms of prejudice.

For questions about racial prejudice, our summary guess is that if anything, subjects overreport racist attitudes by approximately 4 points (95% CI -3 to +9). Over the nine studies in our sample, therefore, the difference between direct questions and list experiments

12 The focus on these three categories instead of other, equally important subdivisions such as gender or class is entirely due to data availability. Our meta-analysis procedure requires a minimum of three studies in order to yield estimates of all our quantities of interest (Gelman and Hill 2006, p. 431).
is not statistically significant. The 50% predictive interval reaches from +1 to +7 points, but the 95% predictive interval admits large negative biases (-16 points) to large positive bias up to 16 points. Our analysis does include the 1994 Multi-Investigator Study (Sniderman et al. 1994) which estimated underreporting on the scale of -10 percentage points for policy attitude questions, but +10 percentage points for non-policy attitudes like interracial dating and a black family moving in next door. Our interpretation is that either the list experiment does not provide the cover it is designed to provide in this context or that respondents actually do hold their reported views (at least on the narrow attitudes measured by these direct questions). We also note that the extreme variability of the list experiment discussed above, even when tamed somewhat through meta-analysis, holds us back from drawing strong conclusions here.

Our meta-analysis again renders a null result for sensitivity bias on questions about religious prejudice. On average, we estimate a -1 point underreporting bias in direct questions thought to be prone to underreporting bias. This estimate is in the expected direction, but the credible interval is 13 points wide and includes zero. The expected range of true effects is on par with the other prejudice-related sensitivity bias estimates. Biases on the order of approximately 5 points are consistent with the set of studies in our meta-analysis.

Our set of studies includes two kinds of questions that measure attitudes towards gays and lesbians. For questions thought to be subject to overreporting, the average estimate of sensitivity bias is -2 percentage points; for underreporting, the estimate is +2 percentage points. These estimates both have an unexpected sign relative to the predictions and are not distinguishable from zero. The range of plausible sensitivity biases in this literature are on the scale of 5 to 10 points.

Support for Authoritarian Regimes Finally, we do find evidence of substantial sensitivity bias when respondents are asked about support for authoritarian regimes and their leaders. Estimates of overreporting range up to a maximum of +43 points when overre-
porting is predicted (Kalinin 2015) and a minimum of -45 points when underreporting is predicted (Weghorst 2015). Based on 21 studies, our meta-analysis estimate of the average level for studies in which overreporting is predicted is +14 points and the 50% predictive interval suggests a likely level of sensitivity bias between +4 to +24 points. When underreporting is predicted, the meta-analysis average based on 13 studies is -8 points with a 50% credible interval between -16 and 0 points. Support for authoritarian regimes is an area where our data suggest there is considerable risk of sensitivity bias. These results are consonant with cross-country comparisons of survey nonresponse rates (Shen and Truex Forthcoming).

As we discussed in the theory section, the risks to responding to surveys in authoritarian contexts – especially on questions about politics and the regime itself – go far beyond the desire to please the interviewer. The regime is a relevant social referent and the costs range up to imprisonment or disappearance.

Empirical Distribution of Sensitivity Bias and Sample Size

Our final set of results uses the empirical distribution of sensitivity bias as a means to gauge the extent to which list experiments conducted to date are sufficiently large. We return to two of the main goals of list experimentation: achieving a better RMSE or demonstrating the existence of sensitivity bias.

Figure 5 shows that many list experiments are simply too small. Below the lower curve (98 of 264 studies), it is likely that direct questioning would have produced answers closer to the truth (in RMSE terms) than the list experiments. Between the two curves (107 studies), the choice between list experiments and the direct question depends on the goal of the research. These list experiments are large enough to produce lower RMSE than the direct question, but are not large enough to reliably demonstrate the existence of sensitivity bias. The studies that are above both curves (59 studies) are large enough such that the list experiment is preferred for either purpose.
Figure 5: Many Studies of Sensitive Topics Are Smaller than Sample Sizes Recommended based on Power or Root Mean-Squared Error Tradeoffs. Existing studies are overlaid on two design recommendations: the power indifference curve for designs estimating the amount of sensitivity bias, and the RMSE indifference curve for designs estimating the prevalence rate.

We emphasize that the indifference curves between list experiments and direct questions included in Figure 5 assume the standard list experiment design. The true position of each study relative to indifference between the two designs is better represented by its effective sample size, adjusting for any improvements to list experiment design and analysis implemented in that study.

Summary of Empirical Results

Is sensitivity bias likely to be a problem? Perhaps unsurprisingly given the huge range of questions that have been investigated using list experiments over the past three decades, the answer is, “it depends.” Subjects substantially overreport support for authoritarian regimes, underreport opposition to them, and underreport vote buying. We find suggestive evidence of overreporting of voter turnout. Surprisingly to us, subjects appear to honestly report their prejudices on the basis of race, religion, and sexual orientation.
Our meta-analysis faces some important limitations. First and foremost, this is not a validation study since for most topics, we do not have access to the true prevalence rate. Indeed, this lack is what occasions the reliance on survey estimates of prevalence in the first place. The interpretation of the meta-analytic results depends on the assumptions one is willing to make. If the list experiment assumptions (no liars and no design effects) hold, we can interpret the estimated differences between direct and list responses as an estimate of sensitivity bias. If these assumptions do not hold, the difference between list and direct estimates simply represents the difference in the answer obtained depending on which measurement technology is used.\(^{13}\) This quantity is still important to learn because applied researchers are faced with the choice of asking directly or using another method. Our estimates can help guide those choices even if the meta-estimates do not represent unbiased estimates of sensitivity bias \textit{per se}.

Another limitation concerns the variability of the list experiment. The power of the list experiment to detect moderate sensitivity bias is low, so our conclusion of limited bias in most direct measures may be an instance of “accepting the null” of no bias. The more cautious interpretation is that we can rule out average biases as large as 10 or 15 percentage points in most cases. Biases on this order are of course very meaningful, but also difficult to detect with list experiments. The posterior predictive intervals are wide, which indicates that the biases in some contexts could be much larger than the average bias, which may justify the use of list experiments.

Despite the reasonable concern that the list experiment assumptions are unlikely to hold in at least some contexts, the technology appears to perform well. In the 166 list experiments for which we have sufficient information, 160 pass the design effects test described in Blair and Imai (2012). However, we highlight an important limitation of our meta-analysis search:

\(^{13}\)For example, no liars may be violated if subjects are simply inattentive (Alvarez et al. 2019) and no design effects may be violated if control counts depend on the presence or absence of the sensitive item (Flavin and Keane 2009).
we are likely to miss list experiments for which the design assumptions are violated because of publication bias or authors’ reluctance to share estimates from procedures whose identifying assumptions are not met. If there is a large body of these failed list experiments, our conclusions might differ.

Discussion

Survey research designs rely on asking respondents for self-reports of political attitudes, beliefs, and behaviors. When respondents refuse to respond, or answer but misreport, the conclusions from survey data will be biased. In this paper, we set out to answer two questions: How much of a problem is sensitivity bias and what can be done about it.

With respect to the first question, we think researchers should consider four criteria when deciding whether to worry about the problem. (1) Is there a social referent respondents have in mind when answering? (2) Do respondents believe the social referent can infer their answers exactly or approximately? (3) Do respondents perceive that the social referent prefers a particular answer to the question? (4) Do respondents believe they (or others) will suffer costs if that preferred response is not provided? If the answer to any of these questions is “no,” then sensitivity bias may not be a meaningful source of measurement error. Researchers may be uncertain as to the answer to each of these questions, in which case care, caution, and further research are of course still warranted.

With respect to what researchers should do about sensitivity bias, the choice between list experiments and direct questions amounts to a bias-variance tradeoff. Under typical conditions, list experiments are approximately 14 times noisier than direct questions, which means that either the sample size or the amount of bias needs to be large in order to justify a list experiment.

Beyond the list experiment, many techniques have been proposed to mitigate sensitivity bias, and the social reference theory helps us to consider these alternative measurement
procedures in a common framework. They largely fall into two types. The first set combine responses with random noise in order to change respondent beliefs about which social referents can infer their responses exactly or approximately. This set includes the list experiment, the randomized response technique, the unrelated question technique, and the crosswise technique. These methods obscure responses both from interviewers and bystanders at the time of the survey, but also from later data consumers including researchers and state authorities. If these are the social referents respondents are concerned about, these methods will reduce sensitivity bias.

The second set of techniques changes the social context in which the sensitive question is asked to separate the response from the identity of the respondent temporarily. Most simply, researchers have implemented secret ballots during surveys to measure vote choice or turnout (Bishop and Fisher 1995), physical barriers between respondents and interviewers (Scacco 2012; Beber et al. 2014), and pre-recorded questionnaires played through headphones with item order randomized (Chauchard 2013). Self-administered surveys and interactive voice response surveys (i.e., with no interviewer involved at all) are often deployed for sensitive surveys for similar reasons. These procedures only obscure responses temporarily, preventing bystanders and in some cases interviewers from linking participants with their responses, though researchers and state authorities can often later reconnect responses to identifying information.\footnote{For an exception, see Scacco (2012), in which sensitive responses were linked to individuals only through a randomized code that could be reconnected at the researcher’s home institution. This procedure was designed to prevent state authorities from connecting responses about participation in riots.} When interviewers or bystanders are the primary social referents respondents worry about, these methods will reduce sensitivity bias as well.

Our research design advice can also guide decision-making between these techniques. All of the techniques that reduce sensitivity bias by adding noise will exhibit a bias-variance tradeoff similar to the one we described for the list experiment. By design, the other information (random noise or unrelated items) reduces precision compared to the direct question.
The techniques that temporarily separate respondents and responses do not typically face a bias-variance tradeoff: they decrease bias without incurring variance penalties. When these techniques can be ethically and logistically deployed (and when the interviewer or bystanders are the primary concern of respondents) they may be the best choice to address sensitivity bias.

In this paper, we have focused on survey measurement of behaviors as well as explicit attitudes and beliefs. Techniques like the implicit association test (Greenwald et al. 1998) and the affect misattribution procedure (Payne et al. 2005), by contrast, target implicit attitudes. These measures are plausibly free from sensitivity bias, since responses are difficult to consciously misrepresent even if respondents would prefer to hide their views (Nosek 2007, though see Skorinko and Sinclair 2018). Nevertheless, a foundational assumption in the implicit attitudes literature is that implicit and explicit attitudes are fundamentally different constructs. By switching from direct measures of explicit attitudes to indirect measures of implicit attitudes, we may have purged our estimates of sensitivity bias, but we have also changed the research question. This switch is of course appropriate when implicit attitudes are indeed the theoretical target of interest.

We have shown that sensitivity bias is a very real concern for survey research, but it varies considerably by context and by topic in sometimes surprising ways. In some literatures, we find little to no evidence of sensitivity bias and in others it is quite sizable. We hope researchers will carefully consider the likely magnitude of sensitivity biases using the four sensitivity criteria before turning to the list experiment or similar techniques, mainly because they are so variable that achieving sufficient precision can be costly. Surveys may also be substantially improved by less expensive changes to survey administration that can reduce bias without increasing variance. When list experiments or similar methods are selected, they should be conducted only with large samples or when biases are expected to be substantial.
References

Kalinin, Kirill. 2015. “Exploring Putin’s Post-Crimean Supermajority.”.

Weghorst, Keith R. 2015. “Political Attitudes and Response Bias in Semi-Democratic Regimes.”.

